Electrochemistry, Thermalanalysis, and Theoretical Study of Vanadyl Schiff Base Complexes

Document Type : Research Paper

Authors

1 Department of Chemistry, Isfahan University of Technology, Isfahan, Iran, 84156-83111

2 Department of Chemistry, Yasouj University, Yasouj, Iran

3 Department of Chemistry, Ilam University, Ilam, Iran

Abstract

The VO(IV) complexes of tridentate ONO Schiff base ligands derived from 2- aminobenzoicacid and salicylaldehyde derivatives were synthesized and characterized by IR, UV–Vis and elemental analysis. Electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good linear correlation was observed between the oxidation potentials and the electron-withdrawing character of the substituents on the Schiff bases, showed the following trend: MeO < H < Br < NO2. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the synthesized complexes were carried out in the range of 20–700 °C. All of the complexes decomposed in three steps. The thermal decomposition pathways were closely related to the nature of the Schiff base ligands and preceded via first-order kinetics. The structures of compounds were determined by ab initio calculations. The optimized molecular geometry was calculated at the B3LYP/6-31G(d) level. The results suggested that, in the complexes, V(IV) ion was in square-pyramid or TBP (trigonal bipyramidal) NO4 coordination geometry. Also the bond lengths and angles were studied and compared.

Keywords


[1] S. Park, V.K. Mathur, R.P. Planap, Polyhedron 17
(1998) 325.
[2] A. Nashinaga, H. Ohara, H. Tomita, T. Matsuura,
Tetrahedron Lett. 24 (1983) 213.
[3] L. Canali, D.C. Sherrigton, Chem. Soc. Rev. 28
(1998) 85.
[4] A.A. Isse, A. Gennaro, E. Vianello, J. Electroanal.
Chem. 444 (1998) 241.
[5] D. Pletcher, H. Thompson, J. Electroanal. Chem. 464
(1999) 168.
[6] T. Okada, K. Katou, T. Hirose, M. Yuasa, I. Sekine, J.
Electrochem. Soc. 146 (1999) 2562.
[7] H. Aghabozorg, N. Firoozi, L. Roshan, H. Eshtiagh-
Hosseini, A.R. Salimi, M. Mirzaei, M. Ghanbari, M.
Shamsipur, M. Ghadermazi, J. Iran. Chem. Soc. 8
(2011) 992.
[8] V. Conte, B. Floris, Inorg. Chem. Acta 363 (2010)
1935.
[9] D. Rehder, Angew. Chem. Int. Ed. Engl. 30 (1991)
148.
[10] A. Butler, C.J. Carrano, Coord. Chem. Rev. 109
(1991) 61.
[11] C. Yuan, L. Lu, Y. Wu, Z. Liu, M. Guo, S. Xing, X.
Fu, M.J. Zhu, Inorg. Biochem. 104 (2010) 978
[12] P. Prasad, P.K. Sasmal, I. Khan, P. Kondaiah, A.R.
Chakravarty, Inorg. Chem. Acta (in press).
[13] E.A. Pedro, M.S. Joa˜o, R. Sandra, A.R. Luiz, P.S.
Mirian, R.D. Edward, T.G.C. Eder, Thermochim.
Acta 453 (2007) 9.
[14] A.A. Soliman, W. Linert, Thermochim. Acta 338
(1999) 67.
[15] A.A. Soliman, J. Thermal. Anal. Calorim. 63 (2001)
221.
[16] B.S. Garg, D.N. Kumar, Spectrochimica Acta Part A
59 (2003) 229.
[17] A. Anthonysamy, S. Balasubramanian, Inorg. Chem.
Commun. 8 (2005) 908.
[18] A.H. Kianfar, S. Mohebbi, J. Iran. Chem. Soc. 4
(2007) 215.
[19] A.H. Kianfar, V. Sobhani, M. Dostani, M. Shamsipur,
M. Roushani, Inorg. Chem. Acta 355 (2011) 108.
[20] A.H. Kianfar, M. Paliz, M. Roushani, M. Shamsipour,
Spectrochimica Acta Part A 82 (2011) 44.
[21] A.H. Kianfar, S. Asle Khademi, R. Hashemi Fath, M.
Roushani, M. Shamsipur, J. Iranian. Chem. Soc. 2013,
impress.
[22] A.W. Coats, J.P. Redfern, Nature 201 (1964) 68.
[23] R. Johari, G. Kumar, D. Kumar, S. Singh, J. Indian
Council of Chemists 26 (2009) 23.
[24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E.
Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery, J.T. Vreven, K.N. Kudin, J.C. Burant,
J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C.
Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.
Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B.
Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S.
Clifford, J. Cio-slowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J.
Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B.
Johnson, W. Chen, M.W. Wong and C. Gonzalez, A.
Pople, 2003 Gaussian 03: Revision B.05. Gaussian,
Pittsburgh.
[25] D.N. Kumar, B.S. Garg, Spectrochimica Acta Part A
59 (2006) 141.
[26] M. Mathew, A.J. Gary, G.J. Palenik, J. Am. Chem.
Soc. 92 (1972) 3197.
[27] A.H. Kianfar, L. Keramat, M. Dostani, M. Shamsipur,
M. Roshani, F. Nikpour, Spectrochemica Acta 77
(2010) 424.
[28] A.H. Sarvestani, A. Salimi, S. Mohebbi, R. Hallaj, J.
Chem. Res. (2005) 190.
[29] A.H. Sarvestani, S. Mohebbi, J. Chem. Res. (2006)
257.
[30] E.G. Ja¨ger, K. Schuhmann, H. Go¨rls, Inorg. Chem.
Acta 255 (1997) 295.
[31] S. Zolezzi, E. Spodine, A. Decinti, Polyhedron 21 (2002) 55.
[32] H.H. Jaffe, Chem. Rev. 53 (1953) 191.
[33] S. Mathew, C.G.R. Nair, K.N. Ninan, Thermochim
Acta 155 (1989) 247.
[34] M.K.M. Nair, P.K. Radhakrishnan, Thermochim Acta
261 (1995) 141.
[35] C. Cordelle, D. Agustin, C.D. Jean, R. Poli, Inorg.
Chim. Acta 364 (2010) 144.
[36] M. Ebel, D. Rehder, Inorg. Chim. Acta 356 (2003)
210.
[37] E.B. Seena, N. Mathew, M. Kuriakose, M.R.
Prathapachandra Kurup, Polyhedron 27(2008) 1455